
2020-09-01

1

ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math., LEL

Prof. Hiren Patel, Ph.D., P.Eng.

Prof. Werner Dietl, Ph.D.

© 2018-20 by Douglas Wilhelm Harder and Hiren Patel.

 Some rights reserved.

Introduction to
recursive algorithms

2
Introduction to recursive algorithms

Outline

• In this lesson, we will:

– Introduce algorithm design techniques and recursion

– Introduce three problems that have recursive solutions

– Describe the general approach of recursive algorithms

– Provide pseudo-C++ code for the described three problems

– Looking ahead

3
Introduction to recursive algorithms

Algorithm design techniques

• Previously, we looked at explicit algorithms for searching and
sorting arrays

• We will now look at a specific algorithm design technique

– That is, an approach that can be used to design algorithms

• Recursion is one such technique,

 and it is the basis for more advanced techniques:

– Divide and conquer

– Dynamic programming

4
Introduction to recursive algorithms

Recursion

• The word recursion is derived from the Latin word recurrere

– To run back

• This word is also the root for “recur” and “recurrence”

– A recursive algorithm implemented as a function is one that will call
itself within that function to solve a problem

2020-09-01

2

5
Introduction to recursive algorithms

Recursion

• The idea is very simple:

– Find an algorithm that solves a larger problem by:

• Breaking the larger problem into smaller but similar problems

• Using the same algorithm to solve those smaller problems

• Using the solution of the smaller problems to create a solution for
the larger problem

– At some point there must be sufficient small problems that are
trivial to solve

• These are called base cases

6
Introduction to recursive algorithms

Queries from a corporate CEO

• Here is an example:

– In a company, employees are either workers or managers

• A manager has a direct supervisory role over those reporting
directly to that manager

• Some managers are executives, others are senior and intermediate
managers

– All employees other than the CEO directly report to one manager

• Managers report directly to either the CEO or another manager

• The only worker to report directly to the CEO is usually the CEO’s
personal administrative assistant

– This creates a hierarchy within the company

7
Introduction to recursive algorithms

Queries from a corporate CEO

• The CEO may want to know how many employees are attending the
Labor Day celebrations

– The CEO asks:

• The CEO’s personal administrative assistant if that person is going

• Each manager directly reporting to the CEO to relay how many
employees under them will be attending

– Each manager in turn asks:

• Any workers reporting to them if they will be attending

• Each manager reporting directly to that person to relay how many
employees under them will be attending

• Each manager will pass down this request, and when each worker
has responded, each manager will pass that information back up

8
Introduction to recursive algorithms

✓
✓
✓
✓ ✓
✓
✓
✓ ✓

✓
✓
✓

✓

✓

✓
✓ ✓

✓

✓ ✓ ✓ ✓ ✓ ✓
✓
✓
✓ ✓

✓
✓
✓
✓ ✓

✓
✓

✓ ✓ ✓ ✓
✓
✓
✓
✓

✓
✓
✓
✓

✓

Queries from a corporate CEO

? ? ? ?

? ? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ?

✓

✓ ✓

✓ ✓ ✓ ✓

✓

✓
✓
✓
✓

✓
✓

✓

4 4 6 5 5 3

10 2 2 3 3 4 2 4 2 1 13 9

22 12 4 24

64
✓

2020-09-01

3

9
Introduction to recursive algorithms

Queries from a corporate CEO

• You will note that every manager performs the same task:

– Ask those workers directly reporting to them if they are attending

– Ask each manager directly reporting to them to perform the same
task on those subordinate to them

• The process must end, for at some point,

 a junior manager will have only workers subordinate to them

10
Introduction to recursive algorithms

Searching directories

• Here is another example:

– Suppose you know that there is a file called final_project.cpp
somewhere in the file system on your computer

– You thought you saved it to the \Users\dw42harder\ECE 150,

 but its not there…

– How would you systematically find such a file?

• Start at the root directory C:\ or /

• Is the file in this directory?

– If yes, we are finished!

– If not, start visiting this directory’s subdirectories alphabetically
one by one

» Use the same approach for searching each of these directories

– If there are no further directories to search in the current directory,
 go back to the directory one up and continue with the next
 directory in alphabetical order, if any

11
Introduction to recursive algorithms

Searching directories

• You will note that every search of a directory has the same task:

– Inspect the files in the current directory

– In a manner similar to searching this directory,

 search each subdirectory of this directory in alphabetical order

• The process must end, for at some point,

 a directory will have only files

12
Introduction to recursive algorithms

Descendants of Genghis Khan

• Here is another example:

– Five in one thousand of the world’s population is a paternal
descendent from Genghis Khan

– You are a paternal descendent of Genghis Khan if either

• You are Genghis Khan

• Your biological father was is a paternal descendent of Genghis Khan

• Note, the opposite is more difficult to describe

– You are not a paternal descendent of Genghis Khan if either

• You were born prior to 1155 CE

• Your biological father is not a paternal descendent of Genghis Khan

– For example, if you can trace your paternal lineage back to Hassan II
of Alamut, you are not a paternal descendent of Genghis Khan

2020-09-01

4

13
Introduction to recursive algorithms

Recursive algorithms

• A problem can be solved in a recursive manner if:

– There are some problems that are so trivial to be solved,

 that they can be solved immediately

• These are the base cases

– Other problems can be solved by:

• Solving similar, but simpler problems, using the same algorithm

• Using these solutions to solve the current problem

14
Introduction to recursive algorithms

Recursive algorithms

• The structure of a recursive function is similar:
return-type recursive_name(parameters…) {

 // Perform operations required both in the

 // trivial and non-trivial cases...

 if (this-is-a-trivial-case) {

 // Solve the trivial case

 return return-value;

 } else {

 // Determine appropriate arguments

 // - Call recursive_name with those arguments

 // If necessary,

 // use the solutions to solve the current problem

 }

}

15
Introduction to recursive algorithms

Recursive algorithms

• The next three slides use pseudo-C++ code to show how we could
program:

– Counting the number of attendees from a company

– Finding a file in a directory structure

– Check if you are a descendent of Genghis Khan

16
Introduction to recursive algorithms

Recursive algorithms
unsigned int count_attendees() {

 unsigned int count{0};

 if (I-am-going) {

 count = 1;

 }

 for (each-worker-reporting-to-me) {

 if (that-worker-is-going) {

 ++count;

 }

 }

 if (there-are-no-managers-subordinate-to-me) {

 return count;

 } else {

 for (each-manager-reporting-to-me) {

 count += tell-that-manager-to count_attendees();

 }

 return count;

 }

}

2020-09-01

5

17
Introduction to recursive algorithms

Recursive algorithms

std::string find_file(std::string filename) {

 if (filename is-in-this-directory) {

 return directory-path-to-this-directory;

 }

 if (this-directory-has-no-subdirectories) {

 return "";

 } else {

 for (each-subdirectotry-in-alphabetical-order) {

 std::string result = ask-subdirectory find_file(filename);

 if (result != "") {

 return result;

 }

 }

 return "";

 }

}

18
Introduction to recursive algorithms

Recursive algorithms

bool is_descendent_of_genghis_khan() {

 if (I-was-born-prior-to-1155-CE) {

 return false;

 } else if (I-am-khan) {

 return true;

 } else {

 return check-if-biological-father is_descendent_of_genghis_khan();

 }

}

19
Introduction to recursive algorithms

Looking ahead

• The next three topics will cover:

– Mathematical recursive functions

– Problems solved using recursive algorithms

– How the call stack supports recursion

20
Introduction to recursive algorithms

Summary

• Following this presentation, you now:

– Have an idea of what an algorithm design technique is

– Understand the idea of a recursive algorithm

– Have seen three examples where a problem can be solved recursively

– Appreciate that it may be possible to implement such solutions in
C++ as recursively calling functions

2020-09-01

6

21
Introduction to recursive algorithms

References

[1] Wikipedia,

 https://en.wikipedia.org/wiki/Recursion_(computer_science)

 [2] Dictionary of Algorithms and Data Structures (DADS)

 https://xlinux.nist.gov/dads/HTML/recursion.html

22
Introduction to recursive algorithms

Acknowledgments

None so far.

23
Introduction to recursive algorithms

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

24
Introduction to recursive algorithms

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

